Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Every finite division ring is a field

Identifieur interne : 000430 ( Main/Exploration ); précédent : 000429; suivant : 000431

Every finite division ring is a field

Auteurs : Martin Aigner [Allemagne] ; Günter M. Ziegler [Allemagne]

Source :

RBID : ISTEX:30507D3439332AE71ED7C9AAFA472A0B7F4992EF

Abstract

Abstract: Rings are important structures in modern algebra. If a ring R has a multiplicative unit element 1 and every nonzero element has a multiplicative inverse, then R is called a division ring. So, all that is missing in R from being a field is the commutativity of multiplication. The best-known example of a non-commutative division ring is the ring of quaternions discovered by Hamilton. But, as the chapter title says, every such division ring must of necessity be infinite. If R is finite, then the axioms force the multiplication to be commutative. This result which is now a classic has caught the imagination of many mathematicians, because, as Herstein writes: “It is so unexpectedly interrelating two seemingly unrelated things, the number of elements in a certain algebraic system and the multiplication of that system.”

Url:
DOI: 10.1007/978-3-642-00856-6_6


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Every finite division ring is a field</title>
<author>
<name sortKey="Aigner, Martin" sort="Aigner, Martin" uniqKey="Aigner M" first="Martin" last="Aigner">Martin Aigner</name>
</author>
<author>
<name sortKey="Ziegler, Gunter M" sort="Ziegler, Gunter M" uniqKey="Ziegler G" first="Günter M." last="Ziegler">Günter M. Ziegler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:30507D3439332AE71ED7C9AAFA472A0B7F4992EF</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1007/978-3-642-00856-6_6</idno>
<idno type="url">https://api.istex.fr/document/30507D3439332AE71ED7C9AAFA472A0B7F4992EF/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A17</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A17</idno>
<idno type="wicri:Area/Istex/Curation">000A17</idno>
<idno type="wicri:Area/Istex/Checkpoint">000386</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000386</idno>
<idno type="wicri:Area/Main/Merge">000430</idno>
<idno type="wicri:Area/Main/Curation">000430</idno>
<idno type="wicri:Area/Main/Exploration">000430</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Every finite division ring is a field</title>
<author>
<name sortKey="Aigner, Martin" sort="Aigner, Martin" uniqKey="Aigner M" first="Martin" last="Aigner">Martin Aigner</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>FU Berlin, Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ziegler, Gunter M" sort="Ziegler, Gunter M" uniqKey="Ziegler G" first="Günter M." last="Ziegler">Günter M. Ziegler</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>FU Berlin, Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Rings are important structures in modern algebra. If a ring R has a multiplicative unit element 1 and every nonzero element has a multiplicative inverse, then R is called a division ring. So, all that is missing in R from being a field is the commutativity of multiplication. The best-known example of a non-commutative division ring is the ring of quaternions discovered by Hamilton. But, as the chapter title says, every such division ring must of necessity be infinite. If R is finite, then the axioms force the multiplication to be commutative. This result which is now a classic has caught the imagination of many mathematicians, because, as Herstein writes: “It is so unexpectedly interrelating two seemingly unrelated things, the number of elements in a certain algebraic system and the multiplication of that system.”</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Berlin</li>
</region>
<settlement>
<li>Berlin</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Berlin">
<name sortKey="Aigner, Martin" sort="Aigner, Martin" uniqKey="Aigner M" first="Martin" last="Aigner">Martin Aigner</name>
</region>
<name sortKey="Ziegler, Gunter M" sort="Ziegler, Gunter M" uniqKey="Ziegler G" first="Günter M." last="Ziegler">Günter M. Ziegler</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000430 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000430 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:30507D3439332AE71ED7C9AAFA472A0B7F4992EF
   |texte=   Every finite division ring is a field
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022